НА ГЛАВНУЮ
Меню сайта
Категория
Ghost++ [1]
С++ [55]
Развлечение
ON - LINE
Опрос
У кого cпособность Invissible круче ?
Всего ответов: 358
Оbserver Ward

Онлайн всего: 1
Гостей: 1
Пользователей: 0


Друзья сайта
Заведи себе Бота
Hаша кнопка
Для обмена банерами , наша кнопка для размещения у вас на сайте

Клансайт USSR


Главная » Статьи » Программирование » С++

7. Функции (1)
Процедурно-ориентированное программирование

В части II были представлены базовые компоненты языка С++: встроенные типы данных (int и double), типы классов (string и vector) и операции, которые можно совершать над данными. В части III мы увидим, как из этих компонентов строятся функции, служащие для реализации алгоритмов.
В каждой программе на С++ должна присутствовать функция main(), которая получает управление при запуске программы. Все остальные функции, необходимые для решения задачи, вызываются из main(). Они обмениваются информацией при помощи параметров, которые получают при вызове, и возвращаемых значений. В главе 7 представлен соответствующие механизмы С++.
Функции используются для того, чтобы организовать программу в виде совокупности небольших и не зависящих друг от друга частей. Она инкапсулирует алгоритм или набор алгоритмов, применяемых к некоторому набору данных. Объекты и типы можно определить так, что они будут использоваться в течение всего времени работы программы. Однако, если некоторые объекты или типы применяются только в части программы, предпочтительнее ограничить область их использования именно этой частью и объявить внутри той функции, где они нужны. Понятие видимости предоставляет в распоряжение программиста механизм, позволяющий ограничивать область применения объектов. Различные области видимости, поддерживаемые языком С++, мы рассмотрим в главе 8.
Для облегчения использования функций С++ предлагает множество средств, рассматриваемых нами в части III. Первым из них является перегрузка. Функции, которые выполняют семантически одну и ту же операцию, но работают с разными типами данных и потому имеют несколько отличающиеся реализации, могут иметь общее имя. Например, все функции для печати значений разных типов, таких, как int, string и т.д., называются print(). Поскольку программисту не приходится запоминать много разных имен для одной и той же операции, пользоваться ими становится проще. Компилятор сам подставляет нужное в зависимости от типов фактических аргументов. В главе 9 объясняется, как объявлять и использовать перегруженные функции и как компилятор выбирает подходящую из набора перегруженных.
Вторым средством, облегчающим использование функций, является механизм шаблонов. Шаблон - это обобщенное определение, которое используется для конкретизации - автоматической генерации потенциально бесконечного множества функций, различающихся только типами входных данных, но не действиями над ними. Этот механизм описывается в главе 10.
Функции обмениваются информацией с помощью значений, которые они получают при вызове (параметров), и значений, которые они возвращают. Однако этот механизм может оказаться недостаточным при возникновении непредвиденной ситуации в работе программы. Такие ситуации называются исключениями, и, поскольку они требуют немедленной реакции, необходимо иметь возможность послать сообщение вызывающей программе. Язык С++ предлагает механизм обработки исключений, который позволяет функциям общаться между собой в таких условиях. Этот механизм рассматривается в главе 11.
Наконец, стандартная библиотека предоставляет нам обширный набор часто используемых функций - обобщенных алгоритмов. В главе 12 описываются эти алгоритмы и способы их использования с контейнерными типами из главы 6 и со встроенными массивами.
7. Функции

Мы рассмотрели, как объявлять переменные (глава 3), как писать выражения (глава 4) и инструкции (глава 5). Здесь мы покажем, как группировать эти компоненты в определения функций, чтобы облегчить их многократное использование внутри программы. Мы увидим, как объявлять и определять функции и как вызывать их, рассмотрим различные виды передаваемых параметров и обсудим особенности использования каждого вида. Мы расскажем также о различных видах значений, которые может вернуть функция. Будут представлены четыре специальных случая применения функций: встроенные (inline), рекурсивные, написанные на других языках и объявленные директивами связывания, а также функция main(). В завершение главы мы разберем более сложное понятие – указатель на функцию.
7.1. Введение

Функцию можно рассматривать как операцию, определенную пользователем. В общем случае она задается своим именем. Операнды функции, или формальные параметры, задаются в списке параметров, через запятую. Такой список заключается в круглые скобки. Результатом функции может быть значение, которое называют возвращаемым. Об отсутствии возвращаемого значения сообщают ключевым словом void. Действия, которые производит функция, составляют ее тело; оно заключено в фигурные скобки. Тип возвращаемого значения, ее имя, список параметров и тело составляют определение функции. Вот несколько примеров:

inline int abs( int obj )
{
    // возвращает абсолютное значение iobj
    return( iobj < 0 ? -iobj : iobj );
}
inline int min( int p1, int p2 )
{
    // возвращает меньшую из двух величин
    return( pi < p2 ? pi :    p2 );
}
    
int gcd( int vl, int v2 )
{
    // возвращает наибольший общий делитель
    while ( v2 )
    {
        int temp = v2;
        v2 = vl % v2;
        vl = temp;
    }
    return vl;
}

Выполнение функции происходит тогда, когда в тексте программы встречается оператор вызова. Если функция принимает параметры, при ее вызове должны быть указаны фактические параметры, аргументы. Их перечисляют внутри скобок, через запятую. В следующем примере main() дважды вызывает abs() и по одному разу min() и gcd(). Функция main() определяется в файле main.C.

#include
    
int main()
{
    // прочитать значения из стандартного ввода
    cout << "Введите первое значение: ";
    int i;
    cin >> i;
    if ( !cin ) {
        cerr << "!? Ошибка ввода - аварийный выход!\n";
        return -1;
    }

    cout << "Введите второе значение: ";
    int j;
    cin >> j;
    if ( !cin ) {
        cerr << "!? Ошибка ввода - аварийный выход!\n";
        return -2;
    }

    cout << "\nmin: " << min( i, j ) << endl;
    i = abs( i );
    j = abs( j );
    cout << "НОД: " << gcd( i, j ) << endl;
    return 0;
}

Вызов функции может обрабатываться двумя разными способами. Если она объявлена встроенной (inline), то компилятор подставляет в точку вызова ее тело. Во всех остальных случаях происходит нормальный вызов, который приводит к передаче управления ей, а активный в этот момент процесс на время приостанавливается. По завершении работы выполнение программы продолжается с точки, непосредственно следующей за точкой вызова. Работа функции завершается выполнением последней инструкции ее тела или специальной инструкции return.
Функция должна быть объявлена до момента ее вызова, попытка использовать необъявленное имя приводит к ошибке компиляции. Определение функции может служить ее объявлением, но ему разрешено появиться в программе только один раз. Поэтому обычно его помещают в отдельный исходный файл. Иногда в одном файле находятся определения нескольких функций, логически связанных друг с другом. Чтобы использовать их в другом исходном файле, необходим механизм, позволяющий объявить ее, не определяя.
Объявление функции состоит из типа возвращаемого значения, имени и списка параметров. Вместе эти три элемента составляют прототип. Объявление может появиться в файле несколько раз.
В нашем примере файл main.C не содержит определений abs(), min() и gcd(), поэтому вызов любой из них приводит к ошибке компиляции. Чтобы компиляция была успешной, их необязательно определять, достаточно только объявить:

int abs( int );
int min( int, int );
int gcd( int, int );

(В таком объявлении можно не указывать имя параметра, ограничиваясь названием типа.)
Объявления (а равно определения встроенных функций ) лучше всего помещать в заголовочные файлы, которые могут включаться всюду, где необходимо вызвать функцию. Таким образом, все файлы используют одно общее объявление. Если его необходимо модифицировать, изменения будут локализованы. Вот так выглядит заголовочный файл для нашего примера. Назовем его localMath.h:

// определение функции находится в файле gcd.С
int gcd( int, int );


inline int abs(int i) {
  return( i<0 ? -i : i );
}
inline int min(int vl.int v2) {
  return( vl<v2 ? vl : v2 );
}

В объявлении функции описывается ее интерфейс. Он содержит все данные о том, какую информацию должна получать функция (список параметров) и какую информацию она возвращает. Для пользователей важны только эти данные, поскольку лишь они фигурируют в точке вызова. Интерфейс помещается в заголовочный файл, как мы поступили с функциями min(), abs() и gcd().
При выполнении наша программа main.C, получив от пользователя значения:

Введите первое значение: 15
Введите второе значение: 123

выдаст следующий результат:

mm: 15
НОД: 3

7.2. Прототип функции

Прототип функции описывает ее интерфейс и состоит из типа возвращаемого функцией значения, имени и списка параметров. В данном разделе мы детально рассмотрим эти характеристики.
7.2.1. Тип возвращаемого функцией значения

Тип возвращаемого функцией значения бывает встроенным, как int или double, составным, как int& или double*, или определенным пользователем – перечислением или классом. Можно также использовать специальное ключевое слово void, которое говорит о том, что функция не возвращает никакого значения:

#include <string>
#include <vector> class Date { /* определение */ };

bool look_up( int *, int );
double calc( double );
int count( const string &, char );
Date& calendar( const char );
void sum( vector<int>&, int );

Однако функция или встроенный массив не могут быть типом возвращаемого значения. Следующий пример ошибочен:

// массив не может быть типом возвращаемого значения
int[10] foo_bar();

Но можно вернуть указатель на первый элемент массива:

// правильно: указатель на первый элемент массива
int *foo_bar();

(Размер массива должен быть известен вызывающей программе.)

Функция может возвращать типы классов, в частности контейнеры. Например:

// правильно: возвращается список символов
list<char> foo_bar();

(Этот подход не очень эффективен. Обсуждение типа возвращаемого значения см. в разделе 7.4.)

Тип возвращаемого функцией значения должен быть явно указан. Приведенный ниже код вызывает ошибку компиляции:

// ошибка: пропущен тип возвращаемого значения
const is_equa1( vector<int> vl, vector<int> v2 );

В предыдущих версиях С++ в подобных случаях считалось, что функция возвращает значение типа int. Стандарт С++ отменил это соглашение. Правильное объявление is_equal() выглядит так:

// правильно: тип возвращаемого значения указан
const bool is_equa1( vector<int> vl, vector<int> v2 );

7.2.2. Список параметров функции

Список параметров не может быть опущен. Функция, которая не требует параметров, должна иметь пустой список либо список, состоящий из одного ключевого слова void. Например, следующие объявления эквивалентны:
int fork();
int fork( void );

Такой список состоит из названий типов, разделенных запятыми. После имени типа может находиться имя параметра, хотя это и необязательно. В списке параметров не разрешается использовать сокращенную запись, соотнося одно имя типа с несколькими параметрами:
int manip( int vl, v2 ); // ошибка
int manip( int vl, int v2 ); // правильно

Имена параметров не могут повторяться. Имена, фигурирующие в определении функции, можно и даже нужно использовать в ее теле. В объявлении же функции они не обязательны и служат средством документирования ее интерфейса. Например:
void print( int *array, int size );

Имена параметров в объявлении и в определении одной и той же функции не обязаны совпадать. Однако употребление разных имен может запутать пользователя.
С++ допускает сосуществование двух или более функций, имеющих одно и то же имя, но разные списки параметров. Такие функции называются перегруженными. О списке параметров в этом случае говорят как о сигнатуре функции, поскольку именно он используется различения разных версий одноименных функций. Имя и сигнатура однозначно идентифицируют версию. (Перегруженные функции подробно обсуждаются в главе 9.)
7.2.3. Проверка типов формальных параметров

Функция gcd() объявлена следующим образом:

int gcd( int, int );

Объявление говорит о том, что имеется два параметра типа int. Список формальных параметров предоставляет компилятору информацию, с помощью которой тот может проверить типы передаваемых функции фактических аргументов.

Что будет, если попытаться вызвать функцию gcd() с аргументами типа char*?

cd( "hello", "world" );

А если передать этой функции не два аргумента, а только один? Или больше двух? Что случится, если потеряется запятая между числами 24 и 312?

gcd( 24312 );

Единственное разумное поведение компилятора – сообщение об ошибке, поскольку попытка выполнить такую программу чревата весьма серьезными последствиями. С++ действительно не пропустит подобные вызовы. Текст сообщения будет выглядеть примерно так:

// gcd( "hello", "world" )
error: invalid argument types ( const char *, const char * ) --
       expecting ( int, int )
ошибка: неверные типы аргументов ( const char *, const char * ) --
       ожидается ( int, int )
    
// gcd( 24312 )
error: missing value for second argument
ошибка: пропущено значение второго аргумента

А если вызвать эту функцию с аргументами типа double? Должен ли этот вызов расцениваться как ошибочный?
gcd( 3.14, 6.29 );

Как было сказано в разделе 4.14, значение типа double может быть преобразовано в int. Следовательно, считать такой вызов ошибочным было бы слишком сурово. Вместо этого аргументы неявно преобразуются в int (отбрасыванием дробной части) и таким образом требования, налагаемые на типы параметров, выполняются. Поскольку при подобном преобразовании возможна потеря точности, хороший компилятор выдаст предупреждение.

Вызов превращается в

gcd( 3, 6 );

что дает в результате 3.

С++ является строго типизированным языком. Компилятор проверяет аргументы на соответствие типов в каждом вызове функции. Если тип фактического аргумента не соответствует типу формального параметра, то производится попытка неявного преобразования. Если же это оказывается невозможным или число аргументов неверно, компилятор выдает сообщение об ошибке. Именно поэтому функция должна быть объявлена до того, как программа впервые обратится к ней: без объявления компилятор не обладает информацией для проверки типов.
Пропуск аргумента при вызове или передача аргумента неуказанного типа часто служили источником ошибок в языке С. Теперь такие погрешности обнаруживаются на этапе компиляции.
Упражнение 7.1

Какие из следующих прототипов функций содержат ошибки? Объясните.

(a) set( int *, int );
(b) void func();
(c) string error( int );
(d) arr[10] sum( int *, int );

Упражнение 7.2

Напишите прототипы для следующих функций:
Функция с именем compare, имеющая два параметра типа ссылки на класс matrix и возвращающая значение типа bool.
Функция с именем extract без параметров, возвращающая контейнер set для хранения значений типа int. (Контейнерный тип set описывался в разделе 6.13.)
Упражнение 7.3

Имеются объявления функций:

double calc( double );
int count( const string &, char );
void sum( vector<int> &, int );
vector<int> vec( 10 );

Какие из следующих вызовов содержат ошибки и почему?

(a) calc( 23.4, 55.1 );
(b) count( "abcda", 'a' );
(c) sum( vec, 43.8 );
(d) calc( 66 );

7.3. Передача аргументов

Функции используют память из стека программы. Некоторая область стека отводится функции и остается связанной с ней до окончания ее работы, по завершении которой отведенная ей память освобождается и может быть занята другой функцией. Иногда эту часть стека называют областью активации.
Каждому параметру функции отводится место в данной области, причем его размер определяется типом параметра. При вызове функции память инициализируется значениями фактических аргументов.
Стандартным способом передачи аргументов является копирование их значений, т.е. передача по значению. При этом способе функция не получает доступа к реальным объектам, являющихся ее аргументами. Вместо этого она получает в стеке локальные копии этих объектов. Изменение значений копий никак не отражается на значениях самих объектов. Локальные копии теряются при выходе из функции.
Значения аргументов при передаче по значению не меняются. Следовательно, программист не должен заботиться о сохранении и восстановлении их значений при вызове функции. Без этого механизма любой вызов мог бы привести к нежелательному изменению аргументов, не объявленных константными явно. Передача по значению освобождает человека от лишних забот в наиболее типичной ситуации.
Однако такой способ передачи аргументов может не устраивать нас в следующих случаях:

    * передача большого объекта типа класса. Временные и пространственные расходы на размещение и копирование такого объекта могут оказаться неприемлемыми для реальной программы;
    * иногда значения аргументов должны быть модифицированы внутри функции. Например, swap() должна обменять значения своих аргументов, что невозможно при передаче по значению:

      // swap() не меняет значений своих аргументов!
      void swap( int vl, int v2 ) {
           int tmp = v2;
           v2 = vl;
           vl = tmp;
      }

swap() обменивает значения локальных копий своих аргументов. Те же переменные, что были использованы в качестве аргументов при вызове, остаются неизменными. Это можно проиллюстрировать, написав небольшую программу:

#include <iostream>
void swap( int, int );
int main() {
  int i = 10;
  int j = 20;
  cout << "Перед swap():\ti: "
    << i << "\tj: " << j << endl;

  swap( i, j );

  cout << "После swap():\ti: "
      << i << "\tj: " << j << endl;

  return 0;
}

Результат выполнения программы:

Перед swap(): i: 10 j: 20
После swap(): i: 10 j: 20

Достичь желаемого можно двумя способами. Первый – объявление параметров указателями. Вот как будет выглядеть реализация swap() в этом случае:

// pswap() обменивает значения объектов,
// адресуемых указателями vl и v2
void pswap( int *vl, int *v2 ) {
   int tmp = *v2;
   *v2 = *vl;
   *vl = tmp;
}

Функция main() тоже нуждается в модификации. Вместо передачи самих объектов необходимо передавать их адреса:
pswap( &i, &j );
Теперь программа работает правильно:

Перед swap(): i: 10 j: 20
После swap(): i: 20 j: 10

Альтернативой может стать объявление параметров ссылками. В данном случае реализация swap() выглядит так:

// rswap() обменивает значения объектов,
// на которые ссылаются vl и v2
void rswap( int &vl, int &v2 ) {
   int tmp = v2;
   v2 = vl;
   vl = tmp;
}

Вызов этой функции из main() аналогичен вызову первоначальной функции swap():

rswap( i, j );

Выполнив программу main(), мы снова получим верный результат.
7.3.1. Параметры-ссылки

Использование ссылок в качестве параметров модифицирует стандартный механизм передачи по значению. При такой передаче функция манипулирует локальными копиями аргументов. Используя параметры-ссылки, она получает l-значения своих аргументов и может изменять их.
В каких случаях применение параметров-ссылок оправданно? Во-первых, тогда, когда без использования ссылок пришлось бы менять типы параметров на указатели (см. приведенную выше функцию swap()). Во-вторых, при необходимости вернуть из функции несколько значений. В-третьих, для передачи большого объекта типа класса. Рассмотрим два последних случая подробнее.

Как пример функции, использующей параметр-ссылку для возврата дополнительного значения, возьмем look_up(), которая будет искать заданную величину в векторе целых чисел. В случае успеха look_up() вернет итератор, указывающий на найденный элемент, иначе – на элемент, расположенный за конечным. Если величина содержится в векторе несколько раз, итератор будет указывать на первое вхождение. Кроме того, дополнительный параметр-ссылка occurs возвращает количество найденных элементов.

#include
    
// параметр-ссылка 'occurs'
// содержит второе возвращаемое значение
    
vector::const_iterator look_up(
    const vector &vec,

    int value,     // искомое значение
    int &occurs )  // количество вхождений
{
    // res_iter инициализируется значением
    // следующего за конечным элемента
    vector::const_iterator res_iter = vec.end();
    occurs = 0;
    
    for ( vector::const_iterator iter = vec.begin();
             iter != vec.end();
             ++iter )
        if ( *iter == value )
        {
            if ( res_iter == vec.end() )
                res_iter = iter;
            ++occurs;
        }
    
    return res_iter;
}

Третий случай, когда использование параметра-ссылки может быть полезно, – это большой объект типа класса в качестве аргумента. При передаче по значению объект будет копироваться целиком при каждом вызове функции, что для больших объектов может привести к потере эффективности. Используя параметр-ссылку, функция получает доступ к той области памяти, где размещен сам объект, без создания дополнительной копии. Например:

class Huge { public: double stuff[1000]; };
extern int calc( const Huge & );

int main() {
    Huge table[ 1000 ];
    // ... инициализация table

    int sum = 0;
    for ( int ix=0; ix < 1000; ++ix )
        // calc() ссылается на элемент массива
        // типа Huge
        sum += calc( tab1e[ix] );
    // ...
}

Может возникнуть желание использовать параметр-ссылку, чтобы избежать создания копии большого объекта, но в то же время не дать вызываемой функции возможности изменять значение аргумента. Если параметр-ссылка не должен модифицироваться внутри функции, то стоит объявить его как ссылку на константу. В такой ситуации компилятор способен распознать и пресечь попытку непреднамеренного изменения значения аргумента.
В следующем примере нарушается константность параметра xx функции foo(). Поскольку параметр функции foo_bar() не является ссылкой на константу, то нет гарантии, что вызов foo_bar() не изменит значения аргумента. Компилятор сигнализирует об ошибке:

class X;
extern int foo_bar( X& );
int foo( const X& xx ) {
  // ошибка: константа передается
  // функции с параметром неконстантного типа
  return foo_bar( xx );
}

Для того чтобы программа компилировалась, мы должны изменить тип параметра foo_bar(). Подойдет любой из следующих двух вариантов:

extern int foo_bar( const X& );
extern int foo_bar( X ); // передача по значению

Вместо этого можно передать копию xx, которую позволено менять:

int foo( const X &xx ) {
  // ...
  X x2 = xx; // создать копию значения

  // foo_bar() может поменять x2,
  // xx останется нетронутым
  return foo_bar( x2 ); // правильно
}

Параметр-ссылка может именовать любой встроенный тип данных. В частности, разрешается объявить параметр как ссылку на указатель, если программист хочет изменить значение самого указателя, а не объекта, который он адресует. Вот пример функции, обменивающей друг с другом значения двух указателей:

void ptrswap( int *&vl, int *&v2 ) {
   int *trnp = v2;
   v2 = vl;
   vl = tmp;
}


Объявление

int *&v1;

должно читаться справа налево: v1 является ссылкой на указатель на объект типа int. Модифицируем функцию main(), которая вызывала rswap(), для проверки работы ptrswap():

#include <iostream>
void ptrswap( int *&vl, int *&v2 );
int main() {
  int i = 10;
  int j = 20;
  int *pi = &i;
  int *pj = &j;

  cout << "Перед ptrswap():\tpi: "
        << *pi << "\tpj: " << *pj << endl;
  ptrswap( pi, pj );
  cout << "После ptrswap():\tpi: "
      << *pi << "\tpj: " << pj << endl;

return 0;

}

Вот результат работы программы:

Перед ptrswap(): pi: 10 pj: 20
После ptrswap(): pi: 20 pj: 10

7.3.2. Параметры-ссылки и параметры-указатели

Когда же лучше использовать параметры-ссылки, а когда – параметры-указатели? В конце концов, и те и другие позволяют функции модифицировать объекты, эффективно передавать в функцию большие объекты типа класса. Что выбрать: объявить параметр ссылкой или указателем?

Как было сказано в разделе 3.6, ссылка может быть один раз инициализирована значением объекта, и впоследствии изменить ее нельзя. Указатель же в течение своей жизни способен адресовать разные объекты или не адресовать вообще.
Поскольку указатель может содержать, а может и не содержать адрес какого-либо объекта, перед его использованием функция должна проверить, не равен ли он нулю:

class X;
void manip( X *px )
{
   // проверим на 0 перед использованием
   if ( px != 0 )
     // обратимся к объекту по адресу...
}

Параметр-ссылка не нуждается в этой проверке, так как всегда существует именуемый ею объект. Например:

class Type { };
void operate( const Type& p1, const Type& p2 );
int main() {
  Type obj1;
  // присвоим objl некоторое значение
  // ошибка: ссылка не может быть равной 0
  Type obj2 = operate( objl, 0 );
}

Если параметр должен ссылаться на разные объекты во время выполнения функции или принимать нулевое значение (ни на что не ссылаться), нам следует использовать указатель.
Одна из важнейших сфер применения параметров-ссылок – эффективная реализация перегруженных операций. При этом использование операций остается простым и интуитивно понятным. (Подробнее данный вопрос рассматривается в главе 15.) Разберем маленький пример. Представим себе класс Matrix (матрица). Хорошо бы реализовать операции сложения и присваивания "привычным” способом:

Matrix a, b, c;
c = a + b;

Эти операции реализуются с помощью перегруженных операторов – функций с немного необычным именем. Для оператора сложения такая функция будет называться operator+. Посмотрим, как ее определить:

Matrix // тип возврата - Matrix
operator+( // имя перегруженного оператора
Matrix m1, // тип левого операнда
Matrix m2 // тип правого операнда
)
{
   Matrix result;
   // необходимые действия
   return result;
}

При такой реализации сложение двух объектов типа Matrix выглядит вполне привычно:
a + b;
но, к сожалению, оказывается совершенно неэффективным. Заметим, что параметры у нас передаются по значению. Содержимое двух матриц будет копироваться в область активации функции operator+(), а поскольку объекты типа Matrix весьма велики, затраты времени и памяти на создание копий могут быть совершенно неприемлемыми.
Представим себе, что мы решили использовать указатели в качестве параметров, чтобы избежать этих затрат. Вот модифицированный код operator+():

// реализация с параметрами-указателями
operator+( Matrix *ml, Matrix *m2 )
{
   Matrix result;
   // необходимые действия
   return result;
}

Да, мы добились эффективной реализации, но зато теперь применение нашей операции вряд ли можно назвать интуитивно понятным. В качестве значений параметров-указателей требуется передавать адреса складываемых объектов. Поэтому для сложения двух матриц пришлось бы написать:

&a + &b; // допустимо, хотя и плохо

Хотя такая форма не может не вызвать критику, но все-таки два объекта сложить еще удается. А вот три уже крайне затруднительно:

// а вот это не работает
// &a + &b возвращает объект типа Matrix
&a + &b + &c;

Для того чтобы сложить три объекта, при подобной реализации нужно написать так:

// правильно: работает, однако ...
&( &a + &b ) + &c;

Трудно ожидать, что кто-нибудь согласится писать такие выражения. К счастью, параметры-ссылки дают именно то решение, которое требуется. Если параметр объявлен как ссылка, функция получает его l-значение, а не копию. Лишнее копирование исключается. И тип фактического аргумента может быть Matrix – это упрощает операцию сложения, как и для встроенных типов. Вот схема перегруженного оператора сложения для класса Matrix:

// реализация с параметрами-ссылками
operator+( const Matrix &m1, const Matrix &m2 )
{
   Matrix result;
   // необходимые действия
   return result;
}

При такой реализации сложение трех объектов Matrix выглядит вполне привычно:

a + b + c;

Ссылки были введены в С++ именно для того, чтобы удовлетворить двум требованиям: эффективная реализация и интуитивно понятное применение.
7.3.3. Параметры-массивы

Массив в С++ никогда не передается по значению, а только как указатель на его первый, точнее нулевой, элемент. Например, объявление

void putValues( int[ 10 ] );

рассматривается компилятором так, как будто оно имеет вид

void putValues( int* );

Размер массива неважен при объявлении параметра. Все три приведенные записи эквивалентны:

// три эквивалентных объявления putValues()
void putValues( int* );
void putValues( int[] );
void putValues( int[ 10 ] );

Передача массивов как указателей имеет следующие особенности:

    * • изменение значения аргумента внутри функции затрагивает сам переданный объект, а не его локальную копию. Если такое поведение нежелательно, программист должен позаботиться о сохранении исходного значения. Можно также при объявлении функции указать, что она не должна изменять значение параметра, объявив этот параметр константой:

      void putValues( const int[ 10 ] );

    * размер массива не является частью типа параметра. Поэтому функция не знает реального размера передаваемого массива. Компилятор тоже не может это проверить. Рассмотрим пример:

      void putValues( int[ 10 ] ); // рассматривается как int*
      int main() {
           int i, j [ 2 ];
           putValues( &i ); // правильно: &i is int*;
                       // однако при выполнении возможна ошибка
           putValues( j ); // правильно: j - адрес 0-го элемента - int*;
                       // однако при выполнении возможна ошибка

При проверке типов параметров компилятор способен распознать, что в обоих случаях тип аргумента int* соответствует объявлению функции. Однако контроль за тем, не является ли аргумент массивом, не производится.
По принятому соглашению C-строка является массивом символов, последний элемент которого равен нулю. Во всех остальных случаях при передаче массива в качестве параметра необходимо указывать его размер. Это относится и к массивам символов, внутри которых встречается 0. Обычно для такого указания используют дополнительный параметр функции. Например:

void putValues( int[], int size );
int main() {
   int i, j[ 2 ];
   putValues( &i, 1 );
   putValues( j, 2 );
   return 0;
}

putValues() печатает элементы массива в следующем формате:

 ( 10 )< 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 >

где 10 – это размер массива. Вот как выглядит реализация putValues(), в которой используется дополнительный параметр:

#include <iostream>
    
const lineLength =12; // количество элементов в строке
void putValues( int *ia, int sz )
{
    cout << "( " << sz << " )< ";
    for (int i=0;i<sz; ++i )
    {
        if ( i % lineLength == 0 && i )
            cout << "\n\t"; // строка заполнена

        cout << ia[ i ];

        // разделитель, печатаемый после каждого элемента,
        // кроме последнего
        if ( i % lineLength != lineLength-1 &&
                 i != sz-1 )
            cout << ", ";
    }
    cout << " >\n";
}

Другой способ сообщить функции размер массива-параметра – объявить параметр как ссылку. В этом случае размер становится частью типа, и компилятор может проверить аргумент в полной мере.

// параметр - ссылка на массив из 10 целых
void putValues( int (&arr)[10] );
int main() {
   int i, j [ 2 ];
   putValues(i); // ошибка:
               // аргумент не является массивом из 10 целых
   putValues(j); // ошибка:
               // аргумент не является массивом из 10 целых
   return 0;
}

Поскольку размер массива теперь является частью типа параметра, новая версия putValues() способна работать только с массивами из 10 элементов. Конечно, это ограничивает ее область применения, зато реализация значительно проще:

#include <iostream>
    
void putValues( int (&ia)[10] )
{
    cout << "( 10 )< ";
    for ( int 1 =0; i < 10; ++i ) { cout << ia[ i ];
    
    // разделитель, печатаемый после каждого элемента,
    // кроме последнего
    if ( i != 9 )
        cout << ", ";
    }
    cout << " >\n";
}

Еще один способ получить размер переданного массива в функции – использовать абстрактный контейнерный тип. (Такие типы были представлены в главе 6. В следующем подразделе мы поговорим об этом подробнее.)
Хотя две предыдущих реализации putValues() правильны, они обладают серьезными недостатками. Так, первый вариант работает только с массивами типа int. Для типа double* нужно писать другую функцию, для long* – еще одну и т.д. Второй вариант производит операции только над массивом из 10 элементов типа int. Для обработки массивов разного размера нужны дополнительные функции. Лучшим решением было бы использовать шаблон – функцию, или, скорее, обобщенную реализацию кода целого семейства функций, которые отличаются только типами обрабатываемых данных. Вот как можно сделать из первого варианта putValues() шаблон, способный работать с массивами разных типов и размеров:

template <class Type>
void putValues( Type *ia, int sz )
{
   // так же, как и раньше
}

Параметры шаблона заключаются в угловые скобки. Ключевое слово class означает, что идентификатор Type служит именем параметра, при конкретизации шаблона функции putValues() он заменяется на реальный тип – int, double, string и т.д. (В главе 10 мы продолжим разговор о шаблонах функций.)
Параметр может быть многомерным массивом. Для такого параметра должны быть заданы правые границы всех измерений, кроме первого. Например:

putValues( int matrix[][10], int rowSize );

Здесь matrix объявляется как двумерный массив, который содержит десять столбцов и неизвестное число строк. Эквивалентным объявлением для matrix будет:

int (*matrix)[10]

Многомерный массив передается как указатель на его нулевой элемент. В нашем случае тип matrix – указатель на массив из десяти элементов типа int. Как и для одномерного массива, граница первого измерения не учитывается при проверке типов. Если параметры являются многомерными массивами, то контролируются все измерения, кроме первого.
Заметим, что скобки вокруг *matrix необходимы из-за более высокого приоритета операции взятия индекса. Инструкция

int *matrix[10];

объявляет matrix как массив из десяти указателей на int.
7.3.4. Абстрактные контейнерные типы в качестве параметров

Абстрактные контейнерные типы, представленные в главе 6, также используются для объявления параметров функции. Например, можно определить putValues() как имеющую параметр типа vector<int> вместо встроенного типа массива.

Контейнерный тип является классом и обеспечивает значительно большую функциональность, чем встроенные массивы. Так, vector<int> "знает” собственный размер. В предыдущем подразделе мы видели, что размер параметра-массива неизвестен функции и для его передачи приходится задавать дополнительный параметр. Использование vector<int> позволяет обойти это ограничение. Например, можно изменить определение нашей putValues() на такое:

#include <iostream>
#include <vector>
    
const lineLength =12; // количество элементов в строке
void putValues( vector<int> vec )
{
    cout << "( " << vec.size() << " )< ";
    for ( int i = 0; i < vec.size(); ++1 ) {
        if ( i % lineLength == 0 && i )
            cout << "\n\t"; // строка заполнена
    
    cout << vec[ i ];
    
    // разделитель, печатаемый после каждого элемента,
    // кроме последнего
    if ( 1 % lineLength != lineLength-1 &&
                 i != vec.size()-1 )
            cout << ", ";
    }
    cout << " >\n";
}

Функция main(), вызывающая нашу новую функцию putValues(), выглядит так:

void putValues( vector<int> );
int main() {
    int i, j[ 2 ];
    // присвоить i и j некоторые значения
    vector<int> vec1(1); // создадим вектор из 1 элемента
    vecl[0] = i;
    putValues( vecl );

    vector<int> vec2;    // создадим пустой вектор
    // добавим элементы к vec2
    for ( int ix = 0;
           ix < sizeof( j ) / sizeof( j[0] );
           ++ix )
      // vec2[ix] == j [ix]
      vec2.push_back( j[ix] );
    putValues( vec2 );

    return 0;
}

Заметим, что параметр putValues()передается по значению. В подобных случаях контейнер со всеми своими элементами всегда копируется в стек вызванной функции. Поскольку операция копирования весьма неэффективна, такие параметры лучше объявлять как ссылки.
Как бы вы изменили объявление putValues()?
Вспомним, что если функция не модифицирует значение своего параметра, то предпочтительнее, чтобы он был ссылкой на константный тип:

void putValues( const vector<int> & ) { ...

7.3.5. Значения параметров по умолчанию

Значение параметра по умолчанию – это значение, которое разработчик считает подходящим в большинстве случаев употребления функции, хотя и не во всех. Оно освобождает программиста от необходимости уделять внимание каждой детали интерфейса функции.
Значения по умолчанию для одного или нескольких параметров функции задаются с помощью того же синтаксиса, который употребляется при инициализации переменных. Например, функция для создания и инициализации двумерного массива, моделирующего экран терминала, может использовать такие значения для высоты, ширины и символа фона экрана:

char *screenInit( int height = 24, int width = 80,
char background = ' ' );

Функция, для которой задано значение параметра по умолчанию, может вызываться по-разному. Если аргумент опущен, используется значение по умолчанию, в противном случае – значение переданного аргумента. Все следующие вызовы screenInit() корректны:

char *cursor;
// эквивалентно screenInit(24,80,' ')
cursor = screenInit();

// эквивалентно screenInit(66,80,' ')
cursor = screenlnit(66);

// эквивалентно screenInit(66,256,' ')
cursor = screenlnit(66, 256);
cursor = screenlnit(66, 256, '#');

Фактические аргументы сопоставляются с формальными параметрами позиционно (в порядке следования), и значения по умолчанию могут использоваться только для подстановки вместо отсутствующих последних аргументов. В нашем примере невозможно задать значение для
background, не задавая его для height и width.

// эквивалентно screenInit('?',80,' ')
cursor = screenInit('?');

// ошибка, неэквивалентно screenInit(24,80,'?')
cursor = screenInit( , ,'?');

При разработке функции с параметрами по умолчанию придется позаботиться об их расположении. Те, для которых значения по умолчанию вряд ли будут употребляться, необходимо поместить в начало списка. Функция screenInit() предполагает (возможно, основываясь на опыте применения), что параметр height будет востребован пользователем наиболее часто.

Значения по умолчанию могут задаваться для всех параметров или только для некоторых. При этом параметры без таких значений должны идти раньше тех, для которых они указаны.

// ошибка: width должна иметь значение по умолчанию,
// если такое значение имеет height
char *screenlnit( int height = 24, int width,
char background = ' ' );

Значение по умолчанию может указываться только один раз в файле. Следующая запись ошибочна:

// tf.h
int ff( int = 0 );

// ft.С
#include "ff.h"
int ff( int i = 0) { ... } // ошибка

По соглашению значение задается в объявлении функции, которое размещается в общедоступном заголовочном файле (описывающем интерфейс), а не в ее определении. Если же указать его в определении, это значение будет доступно только для вызовов функции внутри исходного файла, содержащего это определение.

Можно объявить функцию повторно и таким образом задать дополнительные параметры по умолчанию. Это удобно при настройке универсальной функции для конкретного приложения. Скажем, в системной библиотеке UNIX есть функция chmod(), изменяющая режим доступа к файлу. Ее объявление содержится в системном заголовочном файле <cstdlib>:

int chmod( char *filePath, int protMode );

protMode представляет собой режим доступа, а filePath – имя и каталог файла. Если в некотором приложении файл только читается, можно переобъявить функцию chmod(), задав для соответствующего параметра значение по умолчанию, чтобы не указывать его при каждом вызове:

#include <cstdlib>
int chmod( char *filePath, int protMode=0444 );

Если функция объявлена в заголовочном файле так:

file int ff( int a, int b, int с = 0 ); // ff.h

то как переобъявить ее, чтобы присвоить значение по умолчанию для параметра b? Следующая строка ошибочна, поскольку она повторно задает значение для с:

#include "ff.h"
int ff( int a, int b = 0, int с = 0 ); // ошибка

Так выглядит правильное объявление:

#include "ff.h"
int ff( int a, int b = 0, int с ); // правильно

В том месте, где мы переобъявляем функцию ff(), параметр b расположен правее других, не имеющих значения по умолчанию. Поэтому требование присваивать такие значения справа налево не нарушается. Теперь мы можем переобъявить ff() еще раз:

#include "ff.h"
int ff( int a, int b = 0, int с ); // правильно
int ff( int a = 0, int b, int с ); // правильно

Значение по умолчанию не обязано быть константным выражением, можно использовать любое:

int aDefault();
int bDefault( int );
int cDefault( double = 7.8 );
int glob;

int ff( int a = aDefault() ,
     int b = bDefau1t( glob ) ,
     int с = cDefault() );

Если такое значение является выражением, то оно вычисляется во время вызова функции. В примере выше cDefault() работает каждый раз, когда происходит вызов функции ff() без указания третьего аргумента.
Категория: С++ | Добавил: r2d2 (29.09.2011)
Просмотров: 2242 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Born in Ussr
Залогиниться
Турниры

/j clan ussr /j clan cccp